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Abstract: We present a methodology for evaluating the performance of probe-based Raman
spectroscopy systems for biomedical analysis. This procedure uses a biological standard sample
and data analysis approach to circumvent many of the issues related to accurately measuring and
comparing the signal quality of Raman spectra between systems. Dairy milk is selected as the
biological standard due to its similarity to tissue spectral properties and because its homogeneity
eliminates the dependence of probe orientation on the measured spectrum. A spectral dataset is
first collected from milk for each system configuration, followed by a model-based correction
step to remove photobleaching artifacts and accurately calculate SNR. Results demonstrate that
the proposed strategy, unlike current methods, produces an experimental SNR that agrees with
the theoretical value. Four preconfigured imaging spectrographs that share similar manufacturer
specifications were compared, showing that their capabilities to detect biological Raman spectra
widely differ in terms of throughput and stray light rejection. While the methodology is used to
compare spectrographs in this case, it can be adapted for other purposes, such as optimizing the
design of a custom-built Raman spectrometer, evaluating inter-probe variability, or examining
how altering system subcomponents affects signal quality.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Raman Spectroscopy (RS) is a powerful optical method capable of examining the biochemical
content of a sample in a non-destructive and label-free fashion, yielding specific compositional
information on a molecular level [1]. Following the advent and broader availability of laser
technology, RS has shown great potential to interrogate tissues and biofluids for applications
in clinical diagnostics [2]. In many cases, fiber optic probes (FOPs) enhance the versatility of
developing health monitoring devices [3] since optical fibers hold distinct advantages in this
context (e.g., flexible, small diameter, cheap). Most importantly, they provide the key benefit of
decoupling the laser source and signal detection platform from the sampling volume, allowing
for remote and in situ RS measurements. In effect, FOPs allow more flexibility in device design,
permitting the integration of RS into the instrument channel of standard medical endoscopes
[4,5] and even through hypodermic needles [6].

The Raman scattering cross-section of organic molecules is inherently low [7], so dispersive
RS systems that are designed for biomedical analysis require careful optical design and high-
performance detection components. In practice, enhancing the detection of weak Raman signals
can be achieved in three primary ways: (1) high numerical aperture (NA) light collection optics,
(2) detectors with high quantum efficiency, and (3) high-throughput spectrographs. Concerning
FOP systems, the low NA of fiber optics typically between 0.1–0.3 sets the primary constraint on
light-gathering ability. While bundling multiple collection fibers within the FOP can increase the
amount of optical signal gathered from the sample, there is an upper limit on the number of fibers
that can be efficiently imaged in the RS spectrograph due to off-axis diffraction angles causing a
curvature in the spectral image that degrades spectral resolution [8]. Utilizing detectors with
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high quantum efficiency and low noise performance can also enhance system sensitivity, and
manufacturer-provided specifications help decide between commercially available options. Still,
much of the optimization space for improving RS systems rests on optimizing the performance
of the spectrograph.

However, assessing the performance of the imaging spectrograph used for biomedical RS is
not straightforward because of the specific characteristics of biological Raman spectra that lead
to low signal quality. The Raman-scattered component of the detected spectrum is overwhelmed
by a large proportion of autofluorescence, typically multiple times stronger than the Raman.
Additionally, the weak nature of Raman scattering from biological specimens also makes the
spectrograph vulnerable to stray light, which refers to any light reaching the detector that
deviates from the intended optical path. Stray light interference may arise from ambient light
bleed, backscattering of the excitation laser, or imperfections in optical components within
the spectrograph [9]. Because of these competing signal contributions, a spectrograph used
for detecting biological Raman spectra requires specific attributes: high-efficiency diffraction
gratings, an optical bench with sufficient f-number to capture all the light delivered by the FOP,
light-tight construction, and high-performance filters to block the Raman laser line [10]. The
manufacturer specifications typically define the spectral range, resolution, and f-number of the
spectrograph, but often lack any distinct information about realizable light throughput or stray
light rejection. This leaves the researcher or engineer with the challenge of finding the optimal
spectrograph design for detecting biological Raman spectra.

When testing a RS system’s performance, it is often overlooked that the sample itself affects
various properties of the collected optical signal [11]. First, the scattering coefficient of the
sample impacts the amount of backscattered laser light and, therefore, stray light entering the
spectrometer. Second, the sample’s composition influences the proportion of autofluorescence to
Raman signal present in the spectrum. Using a biological sample ensures that the testing data
accurately captures these aspects of true tissues and will reflect the performance of the system
for biomedical analysis. The sample’s homogeneity is also an important consideration when
comparing multiple RS system configurations, as the repeatability of the optical signal is affected
by the placement and orientation of the FOP with respect to the sample. It is crucial to input
identical signals across all system configurations to prevent experimental variations from skewing
comparison analysis of the tested RS systems.

The signal-to-noise ratio (SNR) is a useful metric to quantify Raman signal quality as it is
a measure of the strength of the Raman signal relative to the amount of signal variance due to
noise. Yet, the SNR of biological Raman spectra is seldom reported. This is largely because
of the photobleaching effect that decreases the autofluorescent background intensity over time,
leading to signal instability and challenges in comparing consecutive data frames to estimate
signal variance. Reports have attempted to experimentally estimated SNR from a single spectrum
by using the variance of a Raman-silent region (e.g., 1800–1900cm−1) [12–15], but this approach
requires analyzing the noise over a region of the spectrum that does not reflect the true variance
at regions where the Raman peaks lie. This ultimately leads to inaccurate results [16]. For this
reason, recent reports analyzing theoretical and experimental Raman SNR utilize non-biological
polymers as reference materials that are resistant to photobleaching [17] or avoid experimental
calculation of SNR from biological spectra altogether [11].

The challenges in unbiased quantification of signal quality from biological samples point
to the motivation of this methodology report. Here, a repeatable and reliable procedure is
outlined to assess the performance of RS system configurations by selecting dairy milk as a
biological standard sample. By closely emulating the Raman signal of tissues, milk provides
a suitable estimate of system data quality for biomedical analysis. Submerging the FOP into
this liquid sample also eliminates probe orientation dependence on the data and circumvents
experimental variances. The Raman dataset undergoes a model-based correction step to remove
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photobleaching artifacts and enables accurate SNR estimation. Results show that this procedure
offers improved accuracy over existing methods, where the experimental SNR agrees with the
theoretically determined value. This method was then used to compare four preconfigured Raman
imaging spectrographs to demonstrate its utility in assessing RS system performance.

2. Materials and methods

2.1. Raman system

Raman datasets were acquired using a narrowband, wavelength-stabilized 785 nm laser diode
(II0785MU0350MS, Innovative Photonic Solutions, NJ) and an FOP that was designed for
operation at this laser line. The FOP (EmVision LLC, FL) includes a single 300-micron core
laser delivery fiber with 0.22 NA surrounded by a ring of seven 300-micron core collection fibers
with equivalent NA to couple diffusely reflected light into the spectrometer. The laser fiber is
affixed with a bandpass filter centered at the laser line to block extraneous wavelengths from
reaching the sample. An annular-shaped 800 nm longpass filter is set atop the proximal end of
the collection fibers for first-stage filtering of the back-scattered laser light. The distal end of
the collection fibers is linearly arranged at an SMA-terminated fiber coupler that is aligned to
the entrance slit of the various spectrographs tested. The optical signal was recorded with a
near-infrared optimized and thermoelectrically cooled deep-depleted CCD camera (Blaze 400HR,
Teledyne Princeton Instruments, CA), as depicted in Fig. 1(a).

Fig. 1. (a) Schematic of the RS system used to acquire biological spectra, including
785 nm laser diode, charge-coupled device (CCD), fiber optic probe (FOP), and the four
preconfigured spectrograph systems. (b) Calibrated and normalized naphthalene spectra,
offset for clarity.

The reported methodology was used to compare the performance of four preconfigured
Raman spectrographs, which are all designed to resolve Raman spectra at 785 nm excitation with
fiber-coupled input and external camera mounting. They share similar optical specifications,
including resolution and f-number. An f-number of f/2.2 or faster is sufficient for collecting all the
light from the 0.22 NA collection fibers within the FOP, which is true for all tested instruments.
The spectrographs do, however, differ in the general design of their optical bench and internal
components. For example, Spectrographs 1 and 2 utilize a filtering design that decreases the
number of internal lenses by butt-coupling the input fibers directly against the entrance slit,
thereby minimizing optical losses and the generation of stray light from lens surfaces. These two
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instruments, along with Spectrograph 3, use a transmissive grating that is more efficient than the
reflective grating used in Spectrograph 4.

2.2. Wavenumber calibration

To map pixel number to relative Raman shift, wavelength dispersion was calibrated with the
atomic emission spectrum of a Neon-Argon lamp. Relative wavenumber was then calculated and
confirmed with acetaminophen and naphthalene standard materials to ensure that the calibration
error was below the system’s spectral resolution, which was calculated from the full-width
half maximum of an atomic emission line within the Neon-Argon spectrum. As seen from
the calibrated and intensity-normalized naphthalene spectra in Fig. 1(b), all spectrographs
successfully reproduce Raman data from the chemical standard with comparable resolution.

2.3. Signal-to-noise (SNR) estimation

The SNR of an optical spectrum represents the amount of detectable signal relative to the
uncertainty of the true signal value due to experimental and instrumental noise. It is experimentally
computed from the Raman peak intensity (S) and the standard deviation (σ) of the peak intensity
at a selected wavenumber ṽ over multiple acquisitions, defined as the ratio

SNR =
S(ṽ)
σ(ṽ)

(1)

Furthermore, it is possible to determine the theoretical Raman SNR from a combination of
independent noise sources and experimental data [11]. The noise is represented by instrumental
and experimental sources added in quadrature because they can be regarded as statistically
independent [18]. The theoretical SNR equation at wavenumber ṽ is given by

SNR =
S(ṽ)√︂

n2
shot(ṽ) + n2

read + n2
dark

(2)

where S is the Raman peak intensity taken from experimental data, n2
shot is the variance due to

shot noise of detected photons, n2
read is the variance from detector readout noise, and n2

dark is the
variance of the detector dark current. Noise sources related to laser stability and flicker noise
[16] are not considered in this analysis. It is important to consider that photon shot noise is
described by Poisson statistics, which states that the magnitude of shot noise is proportional to the
square root of the number of detection events [19]. Therefore, shot noise must be estimated from
detected photoelectron counts (e−) as opposed to the analog-to-digital units (ADUs) given by the
detector. This conversion is required to estimate shot noise and obtain an accurate theoretical
value for Raman SNR.

2.4. Detector characterization

Transforming ADU to absolute photoelectron count is achieved using the camera’s amplifier gain.
The well established mean-variance method [20] was applied to measure amplifier gain of the
detector. A tungsten-halogen lamp was used as a broadband light source, where 500 frames of the
smoothly varying spectrum were analyzed to generate the mean-variance plot in Fig. 2(a). The
conversion factor between e− and ADU, or gain, is calculated from the slope of a regression line
fitted to this mean-variance relationship for each detector gain setting. The lowest gain setting
shows a steep decline in the mean-variance relationship near 40 k ADU (i.e., photoelectron count
of 180 ke− using the gain coefficient of 4.46 e−/ADU) due to the detector’s full well capacity of
180 ke−. So, the Medium gain setting was chosen for further data collection to maintain gain
linearity over the full dynamic range.
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Fig. 2. (a) Gain estimation of the detector using mean-variance plot at three gain settings.
(b) Histogram of pixel intensities from a dark measurement to estimate signal-free noise
(i.e., read noise and dark current) and DC bias.

To accurately account for all sources of noise contributing to signal variance, it is necessary
to include the magnitude of readout noise and dark current in the calculation of the theoretical
signal-to-noise ratio (SNR). While readout noise and dark current are provided in the manufacturer
specifications of the detector used in this report, these values were validated as follows. The DC
bias and signal-free noise were estimated from the mean and standard deviation, respectively,
of pixel intensities from a dark measurement recorded using the same detector settings as the
experimental data presented in this report (i.e., 2 sec acquisition time, medium gain, −80 °C
detector cooling). The histogram of dark measurement pixel values is shown in Fig. 2(b),
where the bias counts are 600 ADU and the signal-free noise was found to be 4 ADU or 7 e−.
The amplifier gain and signal-free noise intensity both agree with this detector’s manufacturer
specifications.

2.5. Biological standard

Dairy milk was found to be an advantageous biological standard for the following reasons. It has
a similar reduced scattering coefficient to mimic the diffuse reflectance behavior of tissues; a
property that has been exploited by using milk as a scattering agent in tissue-mimicking optical
phantoms [21,22]. Milk also contains a variety of organic molecules, such as proteins, lipids,
and carbohydrates that provide a reasonably similar Raman spectral line shape to that of tissues,
as demonstrated in Section 3.1. It is also highly homogenous, which effectively eliminates FOP
orientation dependence on the acquired signal. Additionally, milk is relatively inexpensive and
easily accessible, making it a convenient choice as a biological standard for researchers who want
to assess the performance of probe-based RS systems. Many varieties of milk are commercially
available, but this work determined that 2% reduced-fat homogenized milk has a comparable
proportion of autofluorescence to Raman scattering intensity that is most similar to tissue spectra.

2.6. Data collection

All spectrographs were tested using the same auxiliary system components, including laser, FOP,
and camera, to eliminate their dependence on the measured data. The FOP collection fibers
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and camera were aligned onto each instrument and the wavenumber axis was calibrated prior to
measurement.

The following camera parameters were set for all measurements: Medium gain (1.69 e−/ADU),
1 Mhz readout speed, vertical hardware binning, −80 °C cooling setpoint, and 2 sec acquisition
time. Data acquisition was controlled via LightField software (Teledyne Princeton Instruments,
CA) for readout from the detector. A laser power of 75 mW from the 785 nm diode was measured
at the tip of the FOP before each measurement to ensure consistent irradiance at the sample. A
300 mL solution of dairy milk was added to a beaker and the FOP was dipped 1 cm into the
sample and stably positioned by clamping it into a custom chuck. The room lights were turned
off during acquisition to minimize any interfering ambient light from entering the FOP. A dataset
of 40 consecutive spectra was acquired for a total measurement time of 80 s. The FOP tip was
then cleaned with deionized water, and this process is repeated for each spectrograph using a
fresh aliquot of milk from the stock.

2.7. Preprocessing

Signal preprocessing was minimally applied to avoid potential influences on the calculation of
SNR. The preprocessing steps that were taken will be outlined here, which served to estimate
the Raman intensity and remove photobleaching artifacts. Data preprocessing was performed in
Matlab R2022b software (Mathworks Inc., Natick, MA, USA).

2.7.1. Baseline estimation

Estimation of the baseline is required to properly define Raman peak intensity and calculate
the SNR as it related to the usable Raman signal. This is especially important for biological
spectra, where the Raman signal counts are much weaker than non-Raman background counts.
The adaptive iteratively reweighted Penalized Least Squares (airPLS) method was applied here to
estimate the baseline, which provides good baseline stability in low SNR environments [23].

2.7.2. Photobleaching correction

The effects of photobleaching during continuous laser exposure cause a decrease in autofluores-
cence that follows a characteristic negative exponential decay [24]. This can be seen within an
example milk Raman dataset, where the mean photoelectron count of each spectrum decreases
over time (Fig. 3(a)). A subset of these spectra is plotted in Fig. 3(b) to better visualize the direct
impact of bleaching, which seems to affect the lower wavenumber region of the spectrum to a
greater degree than the higher wavenumber region. Towards the quantification of Raman SNR,
this has the deleterious effect of adding false variance within the data. As seen in Fig. 3(c), the
standard deviation of photoelectron counts (e−) is much higher than

√
e−, which are expected to

be proportional for shot-noise limited detection [19]. Therefore, the statistics of the raw spectral
dataset contain artificially high signal variance due to photobleaching and would generate a lower
experimental SNR when calculated by Eq. (1).

A straightforward and elegant preprocessing algorithm for correcting additive effects in spectral
data is Multiplicative Signal Correction (MSC). This model-based correction step is extensively
used in near-infrared spectroscopy data to correct variations in sample thickness, atmospheric
components, and temperature fluctuations [25]. The MSC algorithm is also useful for Raman data
preprocessing for shift correction and removing other measurement-related variations [26–28]
but has not yet been reported for photobleaching correction. The MSC model (Guo) is given by

I(ṽ) = a + b · m(ṽ) (3)

where the measured spectrum I(ṽ) is modeled onto a reference spectrum m(ṽ) that is typically
chosen to be the mean of the dataset. The parameters a and b in Eq. (3) are computed through a
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first order least-squares fit of each spectrum to the reference. Each photobleaching-corrected
spectrum is then obtained according to

Ic(ṽ) = (I(ṽ) − a) / b (4)

where Ic(ṽ) is the corrected Raman spectrum. This procedure is repeated for each measurement
in the dataset. The MSC-corrected dataset demonstrates a stable mean (Fig. 3(d)) and effectively
shifts all wavenumber regions for their proportional amount of photobleaching decay (Fig. 3(e)).
The pixel-wise data statistics in Fig. 3(f) demonstrate that the shot-noise limited relationship
between counts and variance is attained, where the standard deviation of counts is now proportional
to the square root. This confirms that the MSC procedure does not affect the authentic signal
variance caused by instrumental and shot noise sources.

Fig. 3. (a) Mean values of 40 consecutive spectra acquired from dairy milk, demonstrating
the effect of photobleaching over consecutive measurements. (b) Plot of a subset of spectra;
inset is a zoom of the Raman peak at 1440 cm−1 used for SNR calculation. (c) Standard
deviation and square root of the dataset on a per-pixel basis. (d-f) Plots the same metrics
after MSC correction. All data is presented in photoelectron count (e-), calculated using the
detector amplifier gain.

3. Results

Before evaluating the performance of various preconfigured Raman spectrographs, the photo-
bleaching correction method using MSC was first validated. The Raman SNR was calculated
from experimental data and compared against the theoretical value.
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3.1. Experimental SNR validation

Milk Raman spectra were acquired with an FOP following the procedure reported in Section
2.4. The raw data was corrected for the detector DC bias of 600 ADU, as these counts do not
relate to detected photoelectrons and should not be included in the estimation of shot noise. The
mean spectrum from a dataset of 40 milk spectra and the associated airPLS baseline estimate
are plotted in Fig. 4(a), and the background-subtracted mean spectrum is shown in Fig. 4(b).
Signal counts are given in both ADU and photoelectron counts, which were converted using the
measured detector gain of 1.69 e−/ADU. The Raman spectrum of milk is in good agreement with
previous reports [29–31].

Fig. 4. Raman data from dairy milk and a tissue spectrum. (a) Mean spectrum of the
milk dataset (black curve) and the airPLS baseline estimate (red dotted curve). (b) The
background-subtracted milk spectrum used to estimate Raman intensity, with prominent
peaks identified at 1003, 1300, 1440, and 1660 cm−1. Signal intensities are expressed both
in analog-to-digital units (ADU) and photoelectron (e−) counts. (c-d) Plots of the same
spectral data from a tissue specimen.

This procedure was repeated with a sample of bovine flesh, and analogous data is plotted
in Fig. 4(c)-(d) to demonstrate the similarities in signal characteristics between the biological
standard and a true tissue specimen. Milk shares a similar proportion of autofluoresence (Fig.1a,c)
and Raman scattering intensity (Fig. 4(b),(d)) as tissue, as well as many characteristic biological
spectral features including 1003 cm−1 for phenylalanine, 1300 cm−1 for CH2 twisting, 1440 cm−1

for CH2 stretching, and 1660 cm−1 for C=C stretching [29].
The signal metrics in Table 1 were calculated from the datasets shown in Fig. 4. Total signal

intensity and Raman intensity were taken from the 1440 cm−1 peak, which is the most prominent
Raman band and serves as a benchmark for Raman SNR. To calculate the theoretical Raman SNR,
the signal shot noise was calculated as the square root of total signal intensity in photoelectron
units. The manufacturer provides the signal-free noise of the detector, including both readout
noise and dark current. Still, these instrumental noise sources were empirically confirmed through
the readout of a dark frame at equivalent detector settings to those used for Raman measurements
(see Section 2.4). Using these experimental and instrumental values, the theoretical Raman SNR
values for both milk and the tissue specimen were computed at 1440 cm−1 according to Eq. (2).

The experimental Raman SNR values for milk and the tissue specimen were then calculated
according to Eq. (1) as the ratio of Raman intensity at 1440 cm−1 to the standard deviation of
this peak intensity across the 40 spectra within the dataset. The pixel-level standard deviation
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Table 1. Calculation of theoretical and experimental SNR for Raman data of biological samples

Signal Metric Milk Tissue Units

Total signal intensity 14900, 25330 24140, 41038 ADU, e-

Raman intensity (1440 cm−1) 4559, 7750 4333, 7366 ADU, e-

Signal shot noise (1440 cm−1) 159 203 e-

Signal-free noise sum 7 7 e-

Signal standard
deviation

Silent region, 1800-1900cm−1 45 58 ADU

Uncorrected, 1440 cm−1 201 304 ADU

MSC-corrected, 1440 cm−1 95 110 ADU

SNR1440

Theoretical 49 36 a.u.

Experimental (silent region) 101 75 a.u.

Experimental (uncorrected) 23 14 a.u.

Experimental (MSC-corrected) 48 39 a.u.

at 1440 cm−1 was calculated for the uncorrected and MSC-corrected datasets, indicating that
photobleaching in the uncorrected dataset overestimates signal variance at the Raman peak. The
uncorrected data results in a lower SNR than the theoretical value due to this amplified variance.
Signal variance in the Raman-silent region between 1800-1900cm−1 of a single preprocessed
spectrum was also calculated to emphasize the issue with this noise estimation method used in
previous reports [12–15]. The standard deviation of a silent region underestimates signal variance
in both biological samples because of the lower overall signal counts, and consequently lower shot
noise, compared to the signal counts at the 1440 cm−1 peak. Using the silent region to estimate
signal variance, therefore, generates a higher SNR than the theoretical value. The MSC-corrected
data, however, correctly estimates the true signal variance and gives an experimental SNR that is
in good agreement with the theoretical value.

3.2. Spectrograph performance comparison

Following the validation of using MSC correction to accurately compute Raman SNR from
biological samples, this procedure was used to compare the performance of four preconfigured
Raman spectrographs that can resolve relative wavenumber shifts between 950-1900cm−1 at
785 nm excitation. The tested spectrographs all share similar spectral resolution and f-number,
as seen by the summarized specifications in Table 2. Raman datasets were acquired from the
biological milk standard according to the procedure outlined in Section 2.6.

Table 2. Specifications and Raman signal quality metrics of the tested spectrographs

Spectrograph
Specifications Experimental

F-number
Slit Width

(µm) Grating Type
Resolution

(cm−1) SBR SNR

System 1 f/2.2 200 Transmissive 8.9 0.19 61

System 2 f/2.2 100 Transmissive 8.7 0.20 45

System 3 f/1.8 100 Transmissive 8.3 0.11 23

System 4 f/2 75 Reflective 8.1 0.13 22

The mean spectra of the milk datasets from each spectrograph are presented in Fig. 5(a), and
the background-subtracted mean spectra are shown in Fig. 5(b). Each system configuration used
identical laser power, FOP, detector, and signal acquisition settings to collect Raman spectra,
yet the four instruments demonstrate vastly different signal qualities in terms of throughput and
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the relative proportion of Raman signal to background counts, termed the signal-to-background
ratio (SBR). The general spectral line shape of preprocessed Raman data is equivalent for all
spectrographs, as seen in Fig. 5(b), confirming that the Raman component of the signal was
consistently detected. However, the total Raman intensity and SBR differed, leading to unique
SNRs for each instrument when calculated according to Eq. (1). The optical specifications and
experimental SBR/SNR metrics of each spectrograph are listed in Table 2.

Fig. 5. (a) Mean milk spectra from the four Raman spectrographs with their associated
signal-to-background ratios (SBR). (b) Background-subtracted mean spectra with their
associated Raman signal-to-noise ratios (SNR) computed at 1440 cm−1 after MSC correction
to remove photobleaching effects.

The noted discrepancy in Raman peak intensities between each system configuration indicates
that the spectrographs held varying degrees of light throughput, resulting in a 6x gap in Raman
intensity between the best- and worst-performing instruments. Since the acquisition procedure
and biological standard ensures that an identical optical signal is delivered by the FOP, the
differences in SBR must arise from differences in the spectrographs’ specific optical designs. The
optical throughput and SBR for each spectrograph led to unique Raman SNR values computed at
1440 cm−1 from the MSC-corrected milk datasets. For example, Fig. 5(a) shows that spectrograph
2 shared similar total signal counts to spectrograph 3 at 1440 cm−1 yet exhibited approximately
2x higher Raman signal and SBR. These compounding differences in total Raman signal counts
and SBR led to a much higher SNR in Spectrograph 2 versus 3.

4. Discussion

Maximizing RS system sensitivity is essential to encourage the adoption of this technique for
clinical diagnostics and other related fields that benefit from FOP-based Raman analysis of
biologics. However, there are inherent challenges in comparing the signal quality of biological
Raman spectra across system configurations. First, there is a strong dependence of probe
orientation on the intensity of the detected spectrum, so the Raman signals used to compare
system configurations are susceptible to the experimental variability induced by probe-sample
positioning. Second, photobleaching effects are known to interfere with the experimental
quantification of SNR from biological Raman spectra, resulting in non-biological samples being
used to measure SNR and assess system performance [11,17]. Synthetic samples may not reflect
the true response of the system to analyze organic materials, and they still do not solve the issue
of FOP orientation dependence on the testing data.

By selecting a suitable biological sample that can produce a reliable and consistent Raman
signal, this report establishes a methodology for unbiased performance assessment of RS system
configurations for biomedical analysis. Results demonstrate that a dataset of 40 spectra can be
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measured from this sample and corrected for photobleaching effects using MSC to obtain an
accurate value for Raman SNR that was shown to agree with the theoretical SNR value. Future
studies could explore the potential expedition of data collection through either increasing laser
power or reducing the number of spectral measurements.

Dairy milk was chosen as the biological standard sample for multiple reasons. First, it is
cheap and easily accessible. Second, it mimics many of the optical and chemical properties
of tissues (i.e., diffuse reflectance, autofluorescence, organic biochemical composition) that
manifest as a similar Raman spectrum to bulk tissue, as demonstrated in Fig. 4. Most significant
to assessing the performance of RS systems that utilize FOPs, a homogenous liquid sample like
milk eliminates any experimental variability related to probe-sample orientation. Although milk
may not be the only suitable biological standard, it is certainly a practical option. It is important
to remark that 2% reduced-fat milk may not be available in all countries. A dilution of raw dairy
milk with water may be a strategy to tailor the spectral properties to better mimic that of tissues.
However, this approach would dilute all organic components of milk and would not provide a
way to control the SBR.

The MSC algorithm offers an efficient model-based correction step to eliminate photobleaching
artifacts in the dataset and allows for the accurate calculation of SNR from biological Raman
data, a known challenge in the field of biomedical RS. The Raman SNR was calculated from
experimental data of the milk standard and a tissue specimen using Eq. (1) before and after
applying MSC. Results showed that the MSC-correction approach, unlike the silent region
method, correctly estimates the signal variance at the 1440 cm−1 Raman peak for both biological
samples by providing an experimental SNR value that is in good agreement with the theoretically
determined value. In addition, the suggested method for correcting photobleaching could have
further implications for Raman data analysis. We believe that MSC could be a valuable tool
in alternative situations where autofluorescence decay poses an issue, like when analyzing
time-resolved RS data. Future studies could explore the use of other photobleaching correction
methods and compare them with the MSC algorithm to determine the most effective method
for correcting autofluorescence decay in Raman spectra. For example, exponential fitting of the
fluorescent decay has been explored to correct photobleaching artifacts in microscopy images
[32] but may be less reliable for RS data if the wavelength-dependent background decay rate is
not uniform across the spectrum.

A spectrograph designed to measure biological Raman spectra requires high throughput and
an optical design to minimize stray light. However, neither of these performance characteristics
are obvious from the manufacturer-provided specifications alone. Since the method proposed
here ensures that an identical optical signal is input to each spectrograph, it provides a direct
assessment of their stray light performance through the SBR metric. Background signal counts
increase for a spectrograph that is not optimally designed to minimize ambient light or laser
scatter from reaching the detector. A Raman spectrum with lower SBR, as seen with Systems
3 and 4 in Fig. 5(a), contains a higher proportion of background counts relative to the usable
Raman counts. In effect, a lower SBR increases total shot noise and, therefore, deteriorates
Raman SNR. Similarly, differences in total optical throughput can be compared by the intensity
of detected Raman peaks. Throughput is important to optimize for the inherently weak signals
generated by Raman scattering and is dependent on the specific optical components used within
the instrument; including the diffraction grating, entrance slit width, filters, and lenses. The
background-subtracted signals in Fig. 5(b) demonstrate that each instrument also varied in the
amount of detectable Raman light. The SBR/SNR signal quality metrics for each spectrograph
are summarized in Table 2 and resulted in Systems 1 and 2 having a 3- and 2-fold increase in
Raman SNR, respectively, compared to Systems 3 and 4. These results point to the importance
of a proper methodology to compare RS system performance on biological samples, as the
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manufacturer-provided specifications for these spectrographs would assume similar detection of
the Raman spectra.

5. Conclusions

Assessing the performance of an FOP-based RS system for biomedical analysis is challenging due
to signal instability in biological samples caused by photobleaching and experimental variances
related to probe-sample orientation. The methodology presented here recommends dairy milk
as a useful standard material to compare Raman systems as it provides a repeatable biological
Raman spectrum by eliminating the dependence of probe orientation on the data. Photobleaching
artifacts can then be corrected with MSC to accurately calculate Raman SNR. The utility of
this approach was demonstrated by comparing four preconfigured spectrographs with similar
optical specifications, yet results showed significant variations in SBRs and total Raman intensity.
Ultimately, the unique system responses from each spectrograph led to vastly different Raman
SNRs. While this methodology was used to compare Raman spectrographs in this report, it
may be applied for alternative purposes. For instance, a researcher or engineer may use it to
optimize the design of a custom-built spectrometer or to assess inter-probe variability when
multiple FOPs are manufactured and expected to perform equivalently. It may also be used to
determine how experimental parameters affect Raman SNR. Optimizing RS system performance
for measuring biological samples with an FOP is crucial for a wide range of applications, including
pharmaceuticals [33], food science [34], clinical diagnostics [3], and other biotechnologies
[35]. Therefore, the methodology presented here has significant implications for researchers and
industries that rely on RS for their analyses of biologics by presenting a consistent and unbiased
method for assessing Raman system performance.
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